Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3872, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365839

RESUMO

Hemigraphis alternata (H. alternata), commonly known as Red Flame Ivy, is widely recognized for its wound healing capabilities. However, the pharmacologically active plant components and their mechanisms of action in wound healing are yet to be determined. This study presents the mass spectrometry-based global metabolite profiling of aqueous and ethanolic extract of H. alternata leaves. The analysis identified 2285 metabolites from 24,203 spectra obtained in both positive and negative polarities. The identified metabolites were classified under ketones, carboxylic acids, primary aliphatic amines, steroids and steroid derivatives. We performed network pharmacology analysis to explore metabolite-protein interactions and identified 124 human proteins as targets for H. alternata metabolites. Among these, several of them were implicated in wound healing including prothrombin (F2), alpha-2A adrenergic receptor (ADRA2A) and fibroblast growth factor receptor 1 (FGFR1). Gene ontology analysis of target proteins enriched cellular functions related to glucose metabolic process, platelet activation, membrane organization and response to wounding. Additionally, pathway enrichment analysis revealed potential molecular network involved in wound healing. Moreover, in-silico docking analysis showed strong binding energy between H. alternata metabolites with identified protein targets (F2 and PTPN11). Furthermore, the key metabolites involved in wound healing were further validated by multiple reaction monitoring-based targeted analysis.


Assuntos
Ativação Plaquetária , Cicatrização , Humanos , Cicatrização/fisiologia , Metabolômica , Folhas de Planta/química , Simulação de Acoplamento Molecular
2.
J Cell Commun Signal ; 16(4): 601-608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35174439

RESUMO

Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5158 ). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.

3.
Cells ; 11(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011700

RESUMO

Interleukin-33 (IL-33), a member of the IL-1 superfamily cytokines, is an endogenous danger signal and a nuclear-associated cytokine. It is one of the essential mediators of both innate and adaptive immune responses. Aberrant IL-33 signaling has been demonstrated to play a defensive role against various infectious and inflammatory diseases. Although the signaling responses mediated by IL-33 have been previously reported, the temporal signaling dynamics are yet to be explored. To this end, we applied quantitative temporal phosphoproteomics analysis to elucidate pathways and proteins induced by IL-33 in THP-1 monocytes. Employing a TMT labeling-based quantitation and titanium dioxide (TiO2)-based phosphopeptide enrichment strategy followed by mass spectrometry analysis, we identified and quantified 9448 unique phosphopeptides corresponding to 3392 proteins that showed differential regulation. Of these, 171 protein kinases, 60 phosphatases and 178 transcription factors were regulated at different phases of IL-33 signaling. In addition to the confirmed activation of canonical signaling modules including MAPK, NFκB, PI3K/AKT modules, pathway analysis of the time-dependent phosphorylation dynamics revealed enrichment of several cellular processes, including leukocyte adhesion, response to reactive oxygen species, cell cycle checkpoints, DNA damage and repair pathways. The detailed quantitative phosphoproteomic map of IL-33 signaling will serve as a potentially useful resource to study its function in the context of inflammatory and pathological conditions.


Assuntos
Cromatografia Líquida/métodos , Interleucina-33/metabolismo , Espectrometria de Massas/métodos , Monócitos/metabolismo , Proteômica/métodos , Humanos , Transdução de Sinais
4.
J Cell Commun Signal ; 16(2): 293-300, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34196939

RESUMO

The C-C Motif Chemokine Ligand 18 (CCL18) is a beta-chemokine sub-family member with immunomodulatory functions in primates. CCL18-dependent migration and epithelial-to-mesenchymal transition of oral squamous cell carcinoma, squamous cell carcinoma of head and neck, breast cancer, hepatocellular carcinoma, non-small cell lung carcinoma, ovarian cancer, pancreatic ductal carcinoma and bladder cancer cells are well-established. In the tumor niche, tumor-associated macrophages produce CCL18 and its overexpression is correlated with reduced patient survival in multiple cancers. Although multiple receptors including C-C chemokine receptor type 3 (CCR3), type 6 (CCR6), type 8 (CCR8) and G-protein coupled estrogen receptor (GPER1) are reported for CCL18, the Phosphatidylinositol Transfer Protein, Membrane-Associated 3 (PITPNM3) receptor is currently considered as its predominant receptor. Characterization of the molecular events and check points associated with the immunosuppressive and cancer progression support functions induced by CCL18 for their potential towards therapeutic applications is an area of active research. Hence, in this study, we assembled 917 signaling events reported to be induced by CCL18 through their studied receptors in diverse cell types as an integrated knowledgebase for reference, data integration and gene-set enrichment analysis of global transcriptomic and/or proteomics datasets.

5.
J Cell Commun Signal ; 16(1): 129-135, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34309794

RESUMO

The G-quadruplexes (G4s) are a class of DNA secondary structures with guanine rich DNA sequences that can fold into four stranded non-canonical structures. At the genomic level, their pivotal role is well established in DNA replication, telomerase functions, constitution of topologically associating domains, and the regulation of gene expression. Genome instability mediated by altered G4 formation and assembly has been associated with multiple disorders including cancers and neurodegenerative disorders. Multiple tools have also been developed to predict the potential G4 regions in genomes and the whole genome G4 maps are also being derived through sequencing approaches. Enrichment of G4s in the cis-regulatory elements of genes associated with tumorigenesis has accelerated the quest for identification of G4-DNA binding ligands (G4DBLs) that can selectively bind and regulate the expression of such specific genes. In this context, the analysis of G4DBL responsive transcriptome in diverse cancer cell lines is inevitable for assessment of the specificity of novel G4DBLs. Towards this, we assembled the transcripts differentially regulated by different G4DBLs and have also identified a core set of genes regulated in diverse cancer cell lines in response to 3 or more of these ligands. With the mode of action of G4DBLs towards topology shifts, folding, or disruption of G4 structure being currently visualized, we believe that this dataset will serve as a platform for assembly of G4DBL responsive transcriptome for comparative analysis of G4DBLs in multiple cancer cells based on the expression of specific cis-regulatory G4 associated genes in the future.

6.
OMICS ; 25(7): 450-462, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34191607

RESUMO

Oral cancer is common worldwide but lacks robust diagnostics and therapeutics. Lifestyle factors, such as tobacco chewing and smoking, are significantly associated with oral cancers. Mapping the changes in the global proteome, secretome and post-translational modifications (PTMs) during tobacco exposure of oral keratinocytes hold great potential for understanding the mechanisms of oral carcinogenesis, not to mention for innovation toward clinical interventions in the future. On the other hand, although advances in mass spectrometry (MS)-based techniques have enabled the deep mining of complex proteomes, a large portion of the mass spectrometric data remains unassigned. These unassigned spectral data can be researched for multiple post-translational modifications (multiPTMs). Using data mining of publicly available proteomics data, we report, in this study, a multiPTM analysis of high-resolution MS-derived datasets on cellular proteome and secretome of chronic tobacco-treated oral keratinocytes. We identified 800 PTM sites in 496 proteins. Among them, 43 PTM sites in 37 proteins were found to be differentially expressed, accounting for their protein-level expression. Enrichment analysis of the proteins with altered phosphosite expression and the known kinases of these phosphosites discovered the overrepresentation of certain biological processes such as splicing and hemidesmosome assembly. These findings contribute to a deeper understanding of omics level changes in chronic tobacco-treated oral keratinocytes, and by extension, pathophysiology of oral cancers.


Assuntos
Neoplasias Bucais , Proteoma , Mineração de Dados , Humanos , Queratinócitos/metabolismo , Neoplasias Bucais/genética , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Secretoma , Uso de Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...